feat(agents): add a unified agent
This commit is contained in:
parent
4b89008f3a
commit
92f66266b0
|
@ -0,0 +1,486 @@
|
||||||
|
import { ChatOpenAI } from '@langchain/openai';
|
||||||
|
import type { BaseChatModel } from '@langchain/core/language_models/chat_models';
|
||||||
|
import type { Embeddings } from '@langchain/core/embeddings';
|
||||||
|
import {
|
||||||
|
ChatPromptTemplate,
|
||||||
|
MessagesPlaceholder,
|
||||||
|
PromptTemplate,
|
||||||
|
} from '@langchain/core/prompts';
|
||||||
|
import {
|
||||||
|
RunnableLambda,
|
||||||
|
RunnableMap,
|
||||||
|
RunnableSequence,
|
||||||
|
} from '@langchain/core/runnables';
|
||||||
|
import { BaseMessage } from '@langchain/core/messages';
|
||||||
|
import { StringOutputParser } from '@langchain/core/output_parsers';
|
||||||
|
import LineListOutputParser from '../lib/outputParsers/listLineOutputParser';
|
||||||
|
import LineOutputParser from '../lib/outputParsers/lineOutputParser';
|
||||||
|
import { getDocumentsFromLinks } from '../utils/documents';
|
||||||
|
import { Document } from 'langchain/document';
|
||||||
|
import { searchSearxng } from '../lib/searxng';
|
||||||
|
import path from 'path';
|
||||||
|
import fs from 'fs';
|
||||||
|
import computeSimilarity from '../utils/computeSimilarity';
|
||||||
|
import formatChatHistoryAsString from '../utils/formatHistory';
|
||||||
|
import eventEmitter from 'events';
|
||||||
|
import { StreamEvent } from '@langchain/core/tracers/log_stream';
|
||||||
|
import { IterableReadableStream } from '@langchain/core/utils/stream';
|
||||||
|
|
||||||
|
export interface MetaSearchAgentType {
|
||||||
|
searchAndAnswer: (
|
||||||
|
message: string,
|
||||||
|
history: BaseMessage[],
|
||||||
|
llm: BaseChatModel,
|
||||||
|
embeddings: Embeddings,
|
||||||
|
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||||
|
fileIds: string[],
|
||||||
|
) => Promise<eventEmitter>;
|
||||||
|
}
|
||||||
|
|
||||||
|
interface Config {
|
||||||
|
searchWeb: boolean;
|
||||||
|
rerank: boolean;
|
||||||
|
summarizer: boolean;
|
||||||
|
rerankThreshold: number;
|
||||||
|
queryGeneratorPrompt: string;
|
||||||
|
responsePrompt: string;
|
||||||
|
activeEngines: string[];
|
||||||
|
}
|
||||||
|
|
||||||
|
type BasicChainInput = {
|
||||||
|
chat_history: BaseMessage[];
|
||||||
|
query: string;
|
||||||
|
};
|
||||||
|
|
||||||
|
class MetaSearchAgent implements MetaSearchAgentType {
|
||||||
|
private config: Config;
|
||||||
|
private strParser = new StringOutputParser();
|
||||||
|
|
||||||
|
constructor(config: Config) {
|
||||||
|
this.config = config;
|
||||||
|
}
|
||||||
|
|
||||||
|
private async createSearchRetrieverChain(llm: BaseChatModel) {
|
||||||
|
(llm as unknown as ChatOpenAI).temperature = 0;
|
||||||
|
|
||||||
|
return RunnableSequence.from([
|
||||||
|
PromptTemplate.fromTemplate(this.config.queryGeneratorPrompt),
|
||||||
|
llm,
|
||||||
|
this.strParser,
|
||||||
|
RunnableLambda.from(async (input: string) => {
|
||||||
|
const linksOutputParser = new LineListOutputParser({
|
||||||
|
key: 'links',
|
||||||
|
});
|
||||||
|
|
||||||
|
const questionOutputParser = new LineOutputParser({
|
||||||
|
key: 'question',
|
||||||
|
});
|
||||||
|
|
||||||
|
const links = await linksOutputParser.parse(input);
|
||||||
|
let question = this.config.summarizer
|
||||||
|
? await questionOutputParser.parse(input)
|
||||||
|
: input;
|
||||||
|
|
||||||
|
if (question === 'not_needed') {
|
||||||
|
return { query: '', docs: [] };
|
||||||
|
}
|
||||||
|
|
||||||
|
if (links.length > 0) {
|
||||||
|
if (question.length === 0) {
|
||||||
|
question = 'summarize';
|
||||||
|
}
|
||||||
|
|
||||||
|
let docs = [];
|
||||||
|
|
||||||
|
const linkDocs = await getDocumentsFromLinks({ links });
|
||||||
|
|
||||||
|
const docGroups: Document[] = [];
|
||||||
|
|
||||||
|
linkDocs.map((doc) => {
|
||||||
|
const URLDocExists = docGroups.find(
|
||||||
|
(d) =>
|
||||||
|
d.metadata.url === doc.metadata.url &&
|
||||||
|
d.metadata.totalDocs < 10,
|
||||||
|
);
|
||||||
|
|
||||||
|
if (!URLDocExists) {
|
||||||
|
docGroups.push({
|
||||||
|
...doc,
|
||||||
|
metadata: {
|
||||||
|
...doc.metadata,
|
||||||
|
totalDocs: 1,
|
||||||
|
},
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
const docIndex = docGroups.findIndex(
|
||||||
|
(d) =>
|
||||||
|
d.metadata.url === doc.metadata.url &&
|
||||||
|
d.metadata.totalDocs < 10,
|
||||||
|
);
|
||||||
|
|
||||||
|
if (docIndex !== -1) {
|
||||||
|
docGroups[docIndex].pageContent =
|
||||||
|
docGroups[docIndex].pageContent + `\n\n` + doc.pageContent;
|
||||||
|
docGroups[docIndex].metadata.totalDocs += 1;
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
await Promise.all(
|
||||||
|
docGroups.map(async (doc) => {
|
||||||
|
const res = await llm.invoke(`
|
||||||
|
You are a web search summarizer, tasked with summarizing a piece of text retrieved from a web search. Your job is to summarize the
|
||||||
|
text into a detailed, 2-4 paragraph explanation that captures the main ideas and provides a comprehensive answer to the query.
|
||||||
|
If the query is \"summarize\", you should provide a detailed summary of the text. If the query is a specific question, you should answer it in the summary.
|
||||||
|
|
||||||
|
- **Journalistic tone**: The summary should sound professional and journalistic, not too casual or vague.
|
||||||
|
- **Thorough and detailed**: Ensure that every key point from the text is captured and that the summary directly answers the query.
|
||||||
|
- **Not too lengthy, but detailed**: The summary should be informative but not excessively long. Focus on providing detailed information in a concise format.
|
||||||
|
|
||||||
|
The text will be shared inside the \`text\` XML tag, and the query inside the \`query\` XML tag.
|
||||||
|
|
||||||
|
<example>
|
||||||
|
1. \`<text>
|
||||||
|
Docker is a set of platform-as-a-service products that use OS-level virtualization to deliver software in packages called containers.
|
||||||
|
It was first released in 2013 and is developed by Docker, Inc. Docker is designed to make it easier to create, deploy, and run applications
|
||||||
|
by using containers.
|
||||||
|
</text>
|
||||||
|
|
||||||
|
<query>
|
||||||
|
What is Docker and how does it work?
|
||||||
|
</query>
|
||||||
|
|
||||||
|
Response:
|
||||||
|
Docker is a revolutionary platform-as-a-service product developed by Docker, Inc., that uses container technology to make application
|
||||||
|
deployment more efficient. It allows developers to package their software with all necessary dependencies, making it easier to run in
|
||||||
|
any environment. Released in 2013, Docker has transformed the way applications are built, deployed, and managed.
|
||||||
|
\`
|
||||||
|
2. \`<text>
|
||||||
|
The theory of relativity, or simply relativity, encompasses two interrelated theories of Albert Einstein: special relativity and general
|
||||||
|
relativity. However, the word "relativity" is sometimes used in reference to Galilean invariance. The term "theory of relativity" was based
|
||||||
|
on the expression "relative theory" used by Max Planck in 1906. The theory of relativity usually encompasses two interrelated theories by
|
||||||
|
Albert Einstein: special relativity and general relativity. Special relativity applies to all physical phenomena in the absence of gravity.
|
||||||
|
General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical
|
||||||
|
realm, including astronomy.
|
||||||
|
</text>
|
||||||
|
|
||||||
|
<query>
|
||||||
|
summarize
|
||||||
|
</query>
|
||||||
|
|
||||||
|
Response:
|
||||||
|
The theory of relativity, developed by Albert Einstein, encompasses two main theories: special relativity and general relativity. Special
|
||||||
|
relativity applies to all physical phenomena in the absence of gravity, while general relativity explains the law of gravitation and its
|
||||||
|
relation to other forces of nature. The theory of relativity is based on the concept of "relative theory," as introduced by Max Planck in
|
||||||
|
1906. It is a fundamental theory in physics that has revolutionized our understanding of the universe.
|
||||||
|
\`
|
||||||
|
</example>
|
||||||
|
|
||||||
|
Everything below is the actual data you will be working with. Good luck!
|
||||||
|
|
||||||
|
<query>
|
||||||
|
${question}
|
||||||
|
</query>
|
||||||
|
|
||||||
|
<text>
|
||||||
|
${doc.pageContent}
|
||||||
|
</text>
|
||||||
|
|
||||||
|
Make sure to answer the query in the summary.
|
||||||
|
`);
|
||||||
|
|
||||||
|
const document = new Document({
|
||||||
|
pageContent: res.content as string,
|
||||||
|
metadata: {
|
||||||
|
title: doc.metadata.title,
|
||||||
|
url: doc.metadata.url,
|
||||||
|
},
|
||||||
|
});
|
||||||
|
|
||||||
|
docs.push(document);
|
||||||
|
}),
|
||||||
|
);
|
||||||
|
|
||||||
|
return { query: question, docs: docs };
|
||||||
|
} else {
|
||||||
|
const res = await searchSearxng(question, {
|
||||||
|
language: 'en',
|
||||||
|
engines: this.config.activeEngines,
|
||||||
|
});
|
||||||
|
|
||||||
|
const documents = res.results.map(
|
||||||
|
(result) =>
|
||||||
|
new Document({
|
||||||
|
pageContent: result.content,
|
||||||
|
metadata: {
|
||||||
|
title: result.title,
|
||||||
|
url: result.url,
|
||||||
|
...(result.img_src && { img_src: result.img_src }),
|
||||||
|
},
|
||||||
|
}),
|
||||||
|
);
|
||||||
|
|
||||||
|
return { query: question, docs: documents };
|
||||||
|
}
|
||||||
|
}),
|
||||||
|
]);
|
||||||
|
}
|
||||||
|
|
||||||
|
private async createAnsweringChain(
|
||||||
|
llm: BaseChatModel,
|
||||||
|
fileIds: string[],
|
||||||
|
embeddings: Embeddings,
|
||||||
|
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||||
|
) {
|
||||||
|
return RunnableSequence.from([
|
||||||
|
RunnableMap.from({
|
||||||
|
query: (input: BasicChainInput) => input.query,
|
||||||
|
chat_history: (input: BasicChainInput) => input.chat_history,
|
||||||
|
context: RunnableLambda.from(async (input: BasicChainInput) => {
|
||||||
|
const processedHistory = formatChatHistoryAsString(
|
||||||
|
input.chat_history,
|
||||||
|
);
|
||||||
|
|
||||||
|
let docs: Document[] | null = null;
|
||||||
|
let query = input.query;
|
||||||
|
|
||||||
|
if (this.config.searchWeb) {
|
||||||
|
const searchRetrieverChain =
|
||||||
|
await this.createSearchRetrieverChain(llm);
|
||||||
|
|
||||||
|
const searchRetrieverResult = await searchRetrieverChain.invoke({
|
||||||
|
chat_history: processedHistory,
|
||||||
|
query,
|
||||||
|
});
|
||||||
|
|
||||||
|
query = searchRetrieverResult.query;
|
||||||
|
docs = searchRetrieverResult.docs;
|
||||||
|
}
|
||||||
|
|
||||||
|
const sortedDocs = await this.rerankDocs(
|
||||||
|
query,
|
||||||
|
docs ?? [],
|
||||||
|
fileIds,
|
||||||
|
embeddings,
|
||||||
|
optimizationMode,
|
||||||
|
);
|
||||||
|
|
||||||
|
return sortedDocs;
|
||||||
|
})
|
||||||
|
.withConfig({
|
||||||
|
runName: 'FinalSourceRetriever',
|
||||||
|
})
|
||||||
|
.pipe(this.processDocs),
|
||||||
|
}),
|
||||||
|
ChatPromptTemplate.fromMessages([
|
||||||
|
['system', this.config.responsePrompt],
|
||||||
|
new MessagesPlaceholder('chat_history'),
|
||||||
|
['user', '{query}'],
|
||||||
|
]),
|
||||||
|
llm,
|
||||||
|
this.strParser,
|
||||||
|
]).withConfig({
|
||||||
|
runName: 'FinalResponseGenerator',
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
private async rerankDocs(
|
||||||
|
query: string,
|
||||||
|
docs: Document[],
|
||||||
|
fileIds: string[],
|
||||||
|
embeddings: Embeddings,
|
||||||
|
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||||
|
) {
|
||||||
|
if (docs.length === 0 && fileIds.length === 0) {
|
||||||
|
return docs;
|
||||||
|
}
|
||||||
|
|
||||||
|
const filesData = fileIds
|
||||||
|
.map((file) => {
|
||||||
|
const filePath = path.join(process.cwd(), 'uploads', file);
|
||||||
|
|
||||||
|
const contentPath = filePath + '-extracted.json';
|
||||||
|
const embeddingsPath = filePath + '-embeddings.json';
|
||||||
|
|
||||||
|
const content = JSON.parse(fs.readFileSync(contentPath, 'utf8'));
|
||||||
|
const embeddings = JSON.parse(fs.readFileSync(embeddingsPath, 'utf8'));
|
||||||
|
|
||||||
|
const fileSimilaritySearchObject = content.contents.map(
|
||||||
|
(c: string, i) => {
|
||||||
|
return {
|
||||||
|
fileName: content.title,
|
||||||
|
content: c,
|
||||||
|
embeddings: embeddings.embeddings[i],
|
||||||
|
};
|
||||||
|
},
|
||||||
|
);
|
||||||
|
|
||||||
|
return fileSimilaritySearchObject;
|
||||||
|
})
|
||||||
|
.flat();
|
||||||
|
|
||||||
|
if (query.toLocaleLowerCase() === 'summarize') {
|
||||||
|
return docs.slice(0, 15);
|
||||||
|
}
|
||||||
|
|
||||||
|
const docsWithContent = docs.filter(
|
||||||
|
(doc) => doc.pageContent && doc.pageContent.length > 0,
|
||||||
|
);
|
||||||
|
|
||||||
|
if (optimizationMode === 'speed' || this.config.rerank === false) {
|
||||||
|
if (filesData.length > 0) {
|
||||||
|
const [queryEmbedding] = await Promise.all([
|
||||||
|
embeddings.embedQuery(query),
|
||||||
|
]);
|
||||||
|
|
||||||
|
const fileDocs = filesData.map((fileData) => {
|
||||||
|
return new Document({
|
||||||
|
pageContent: fileData.content,
|
||||||
|
metadata: {
|
||||||
|
title: fileData.fileName,
|
||||||
|
url: `File`,
|
||||||
|
},
|
||||||
|
});
|
||||||
|
});
|
||||||
|
|
||||||
|
const similarity = filesData.map((fileData, i) => {
|
||||||
|
const sim = computeSimilarity(queryEmbedding, fileData.embeddings);
|
||||||
|
|
||||||
|
return {
|
||||||
|
index: i,
|
||||||
|
similarity: sim,
|
||||||
|
};
|
||||||
|
});
|
||||||
|
|
||||||
|
let sortedDocs = similarity
|
||||||
|
.filter(
|
||||||
|
(sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3),
|
||||||
|
)
|
||||||
|
.sort((a, b) => b.similarity - a.similarity)
|
||||||
|
.slice(0, 15)
|
||||||
|
.map((sim) => fileDocs[sim.index]);
|
||||||
|
|
||||||
|
sortedDocs =
|
||||||
|
docsWithContent.length > 0 ? sortedDocs.slice(0, 8) : sortedDocs;
|
||||||
|
|
||||||
|
return [
|
||||||
|
...sortedDocs,
|
||||||
|
...docsWithContent.slice(0, 15 - sortedDocs.length),
|
||||||
|
];
|
||||||
|
} else {
|
||||||
|
return docsWithContent.slice(0, 15);
|
||||||
|
}
|
||||||
|
} else if (optimizationMode === 'balanced') {
|
||||||
|
const [docEmbeddings, queryEmbedding] = await Promise.all([
|
||||||
|
embeddings.embedDocuments(
|
||||||
|
docsWithContent.map((doc) => doc.pageContent),
|
||||||
|
),
|
||||||
|
embeddings.embedQuery(query),
|
||||||
|
]);
|
||||||
|
|
||||||
|
docsWithContent.push(
|
||||||
|
...filesData.map((fileData) => {
|
||||||
|
return new Document({
|
||||||
|
pageContent: fileData.content,
|
||||||
|
metadata: {
|
||||||
|
title: fileData.fileName,
|
||||||
|
url: `File`,
|
||||||
|
},
|
||||||
|
});
|
||||||
|
}),
|
||||||
|
);
|
||||||
|
|
||||||
|
docEmbeddings.push(...filesData.map((fileData) => fileData.embeddings));
|
||||||
|
|
||||||
|
const similarity = docEmbeddings.map((docEmbedding, i) => {
|
||||||
|
const sim = computeSimilarity(queryEmbedding, docEmbedding);
|
||||||
|
|
||||||
|
return {
|
||||||
|
index: i,
|
||||||
|
similarity: sim,
|
||||||
|
};
|
||||||
|
});
|
||||||
|
|
||||||
|
const sortedDocs = similarity
|
||||||
|
.filter((sim) => sim.similarity > (this.config.rerankThreshold ?? 0.3))
|
||||||
|
.sort((a, b) => b.similarity - a.similarity)
|
||||||
|
.slice(0, 15)
|
||||||
|
.map((sim) => docsWithContent[sim.index]);
|
||||||
|
|
||||||
|
return sortedDocs;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
private processDocs(docs: Document[]) {
|
||||||
|
return docs
|
||||||
|
.map((_, index) => `${index + 1}. ${docs[index].pageContent}`)
|
||||||
|
.join('\n');
|
||||||
|
}
|
||||||
|
|
||||||
|
private async handleStream(
|
||||||
|
stream: IterableReadableStream<StreamEvent>,
|
||||||
|
emitter: eventEmitter,
|
||||||
|
) {
|
||||||
|
for await (const event of stream) {
|
||||||
|
if (
|
||||||
|
event.event === 'on_chain_end' &&
|
||||||
|
event.name === 'FinalSourceRetriever'
|
||||||
|
) {
|
||||||
|
``;
|
||||||
|
emitter.emit(
|
||||||
|
'data',
|
||||||
|
JSON.stringify({ type: 'sources', data: event.data.output }),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
if (
|
||||||
|
event.event === 'on_chain_stream' &&
|
||||||
|
event.name === 'FinalResponseGenerator'
|
||||||
|
) {
|
||||||
|
emitter.emit(
|
||||||
|
'data',
|
||||||
|
JSON.stringify({ type: 'response', data: event.data.chunk }),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
if (
|
||||||
|
event.event === 'on_chain_end' &&
|
||||||
|
event.name === 'FinalResponseGenerator'
|
||||||
|
) {
|
||||||
|
emitter.emit('end');
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async searchAndAnswer(
|
||||||
|
message: string,
|
||||||
|
history: BaseMessage[],
|
||||||
|
llm: BaseChatModel,
|
||||||
|
embeddings: Embeddings,
|
||||||
|
optimizationMode: 'speed' | 'balanced' | 'quality',
|
||||||
|
fileIds: string[],
|
||||||
|
) {
|
||||||
|
const emitter = new eventEmitter();
|
||||||
|
|
||||||
|
const answeringChain = await this.createAnsweringChain(
|
||||||
|
llm,
|
||||||
|
fileIds,
|
||||||
|
embeddings,
|
||||||
|
optimizationMode,
|
||||||
|
);
|
||||||
|
|
||||||
|
const stream = answeringChain.streamEvents(
|
||||||
|
{
|
||||||
|
chat_history: history,
|
||||||
|
query: message,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
version: 'v1',
|
||||||
|
},
|
||||||
|
);
|
||||||
|
|
||||||
|
this.handleStream(stream, emitter);
|
||||||
|
|
||||||
|
return emitter;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
export default MetaSearchAgent;
|
Loading…
Reference in New Issue